A simple click by click protocol to perform docking: AutoDock 4.2 made easy for non-bioinformaticians

نویسندگان

  • Syed Mohd. Danish Rizvi
  • Shazi Shakil
  • Mohd. Haneef
چکیده

Recently, bioinformatics has advanced to the level that it allows almost accurate prediction of molecular interactions that hold together a protein and a ligand in the bound state. For instance, the program AutoDock has been developed to provide a procedure for predicting the interaction of small molecules with macromolecular targets which can easily separate compounds with micromolar and nanomolar binding constants from those with millimolar binding constants and can often rank molecules with finer differences in affinity. AutoDock can be used to screen a variety of possible compounds, searching for new compounds with specific binding properties or testing a range of modifications of an existing compound. The present work is a detailed outline of the protocol to use AutoDock in a more user-friendly manner. The first step is to retrieve required Ligand and Target.pdb files from major databases. The second step is preparing PDBQT format files for Target and Ligand (Target.pdbqt, Ligand.pdbqt) and Grid and Docking Parameter file (a.gpf and a.dpf) using AutoDock 4.2. The third step is to perform molecular docking using Cygwin and finally the results are analyzed. With due confidence, this is our humble claim that a researcher with no previous background in bioinformatics research would be able to perform molecular docking using AutoDock 4.2 program by following stepwise guidelines given in this article.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alkyl surface modification of nanoporous silica SBA-15 by click chemistry to obtain triazole products

In this study, Santa Barbara Amorphous (SBA-15) mesoporous silica has been functionalized with aminopropyl groups that were converted to propargyl-bearing moieties through the reaction with propargyl bromide. The material then underwent an efficient Cu(I)-catalyzed azide alkyne click reaction with sodium azide in order to obtain the corresponding triazole products. The covalent modification of ...

متن کامل

Silica-anchored Cu(I) aminothiophenol complex: An efficient heterogeneous catalyst for synthesis of 1,4-disubstituted 1,2,3-triazoles in water

An efficient method has been developed for synthesis of 1,4-disubstituted 1,2,3-triazoles using the silica-anchored Cu(I) aminothiophenol complex [SiO2-AT-Cu(I)] as a novel heterogeneous catalyst. The prepared catalyst is characterized by the FT-IR spectroscopy, and TGA, SEM, and ICP techniques. Terminal alkynes react with aroyl bromides and sodium azide in the presence of CuI anchor...

متن کامل

Silica-anchored Cu(I) aminothiophenol complex: An efficient heterogeneous catalyst for synthesis of 1,4-disubstituted 1,2,3-triazoles in water

An efficient method has been developed for synthesis of 1,4-disubstituted 1,2,3-triazoles using the silica-anchored Cu(I) aminothiophenol complex [SiO2-AT-Cu(I)] as a novel heterogeneous catalyst. The prepared catalyst is characterized by the FT-IR spectroscopy, and TGA, SEM, and ICP techniques. Terminal alkynes react with aroyl bromides and sodium azide in the presence of CuI anchor...

متن کامل

Alkyl surface modification of nanoporous silica SBA-15 by click chemistry to obtain triazole products

In this study, Santa Barbara Amorphous (SBA-15) mesoporous silica has been functionalized with aminopropyl groups that were converted to propargyl-bearing moieties through the reaction with propargyl bromide. The material then underwent an efficient Cu(I)-catalyzed azide alkyne click reaction with sodium azide in order to obtain the corresponding triazole products. The covalent modification of ...

متن کامل

Three-Component and Click Strategy for Synthesis of β-Hydroxy 1,4-Disubstituted 1,2,3-Triazoles Derivatives Catalyzed by 1,4-Dihydroxyanthraquinone-copper(II) Complex onto Nano AlPO4

In this work, copper(II) heterogeneous nanocatalyst supported on modified AlPO4 (Cu(II)-DA@Nano AlPO4) was used for the synthesis of some biological active heterocyclic molecules, particularly for the efficient conversion of a wide range of non-activated terminal alkynes to β-hydroxy 1,4-disubstituted 1,2,3-triazolethrough a three-component “click” reaction at room temperature in water. The reg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2013